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Distribution functions of a simple fluid under shear. 1l. High shear rates
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The distortion of structure of a simple, inverse 12 soft-sphere fluid undergoing plane Couette flow is studied
by nonequilibrium molecular dynamid®NEMD) and equilibrium molecular dynamidEMD) with a high-
shear-rate version of the nonequilibriuliE) potential obtained recently from the NE distribution function
theory of Gan and E(IPhys. Rev. A45, 3670;46, 6344(1992]. The theory suggests a NE potential under
which the equilibrium structure of the fluid is that of a NE fluid, and also suggests a corresponding Ornstein-
Zernike equation with its closure relations. As in the low-shear-rate[daseV. Kalyuzhnyi, S. T. Cui, P. T.
Cummings, and H. D. Cochran, Phys. Rev6®& 1716(1999] the agreement between EMD and the modified
hypernetted chain version of the theory is good. Although the high-shear-rate version of the NE potential
improves the agreement between NEMD and EMD regiritsomparison with the low-shear-rate versioits
predictions are still unsatisfactory. With the high-shear-rate NE potential, EMD gives qualitatively correct
predictions only for the shift of the position of the first maximum of the NE distribution function. The
corresponding changes in the magnitude of the first maximum predicted by EMD have an opposite direction in
comparison with those predicted by NEMD. It is concluded that the NE potential used is not very successful,
and more accurate models for the potential are needed.
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I. INRODUCTION results of NEMD and suggest that the NE potential used is
not very accurate. More recently an improved version of the
In an earlier papefl], we tested the low-shear-rate ver- NE potential has been developfg]. It is expected that this
sion of the integral equation theory for the nonequilibriumversion of the potential, to which we refer as the full NE
(NE) distribution function of a simple fluid under shear, pro- potential, may provide a more accurate description of the NE
posed recently by Gan and HGE) [2]. They derived a structure, extending the range of the theory to the higher-
hierarchy of nonlinear integral equations for the NE fluctua-shear-rate regime.
tions from the NE canonical distribution function, an ap- In this paper we continue to explore the performance of
proach similar in spirit to the theory of the structure of densethe GE theory with the full NE potential. As in our earlier
equilibrium fluids. The GE theory leads to an integral equa-study [1] we compare predictions of the MHNC theory,
tion for the anisotropic NE pair distribution function which NEMD predictions, and predictions of the EMD for the full
reduces to the Percus-Yeri¢RY) integral equation in the NE potential. The paper is organized as follows. For the sake
equilibrium limit, suggesting that the Ornstein-Zernicke of completeness, in the next section we give a condensed
(OZ) relation also holds for NE fluids, i.e., the NE OZ equa- summary of the GE theory. In Sec. Ill we present our results

tion (NEOZ). In essence, the GE theory postulates a NEand discussion, and in Sec. IV we collect our conclusions.
potential under which the equilibrium structure of a fluid is

that of the NE fluid. With such a potential all of the tools of

equilibrium statistica_ll mechanics_, can be_: brought to bear on Il. SUMMARY OF GAN-EU THEORY

the problem of a simple shearing liquid; furthermore, the

possibility of similar progress for molecular liquids is  We refer the reader to the original publicatidis-3] for
opened up. The best test of the theory is to compare ita full discussion of the GE theory. Our terminology and no-
predictions with NE molecular dynamicéMD) results, tation follow Ref.[1], and we give only a condensed sum-
which are available only at relatively high shear rates. Amary to make the paper self-contained.

successful theory could be usefully applied at lower shear Following[1-3], we consider steady-state planar Couette
rates. The theory and some variants of it have been testdtbw of a fluid confined between two infinite parallel plates.
using the methods of NEMD and equilibrium MEMD)  They axis is perpendicular to the plates, which are located at
with the GE NE potential. From comparison of the results ofy=+ — 3D and move with a uniform velocity- 3uq in op-

the theory with results of EMD with the NE potential at posite directions along the axis. The key quantity of the
lower shear rates, it was concluded that, for a given NEpresent theory is the NE potentigl,o(r), which follows
potential, the theory is reasonably accurate, especially witfrom the solution of the corresponding kinetic equation that
the modified hypernetted chai{iMHNC) closure. The EMD has been derived and solved[R3]. As a result the follow-
results with the NE potential were also compared with theing expression for the NE potential has been proposed:
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TABLE |. Reduced hydrostatic pressumg =pe/o®, shear 0 W
stresd1/2p, and normal stres/2p for the soft-sphere particles at fne . fw"&e’e
packing fractionv=0.45 and reduced temperatug& =1 calcu- -0.5 ,'“'\ Vol (a)
lated from NEMD simulation. Here the number in parentheses is__ ; \__‘,,-/
the statistical uncertainty in the least significant digit of the corre- ;?:_’, -1 2 4
sponding number ang,, is the total run length in the reduced time § /
unit 7 g 15
‘ : |/
g
7" p* 1/2p Ny/2p trun g * \ /
0.00 8.3891) 0.0000 0.0000 25
0.50 8.4681) —0.0400 —0.0014 3200 s \/ .
0.75 8.55%1) —0.0578 —0.0022 2400 ) | i
1.00 8.6641) —-0.0737 —0.0032 980 08 0.9 1 11 12 13 1.4
distance r*
P i -
V(N[ _ 25 g l\ ®)
Vie(r,0,0)=V(r)+a(r)r ——sirfdsin 2¢
ar |2p 2 I \
1N, g s
— = ==(2sirtgsirtp—1)|, (1) s I \
3 2p B 1
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whereV(r) is the equilibrium potentialp is the hydrostatic & ~ °° [ X
pressurell andN, are the shear and normal stresses, respec= 0 sead o o
tively, anda(r) is a switching factor o5 L " e
S r
_ geq(r)y r<ro -1 = ¥
a(r)= 1, r>r,, 2) 08 09 1 11 12 13 14
distance r*

which is needed to avoid thg infini.tely large ”ega“"e yalue FIG. 1. Mayer function for the high-shear-rate version of the NE
of Vye(r) for r=0. Herer, is defined by the inequality ,tenial(1) for the packing fractionv=0.45 and azimuthal angle
eq(r)=1 for O<r=ro, andgeq(r) is the equilibrium pair yajuesp=0 (a) and ¢= /2 (b). Circles represent an exact result
distribution function of the present system. The shear stresg, ¥*=1.0 (y=1.07) and diamonds represent an exact result for
and normal stress satisfy the algebraic equation % =9.047 (y=10.0p* = 8.38911/2p= — 0.223N,/2p= — 0.237).

— 1 7 172 Results withl ,,,=4 (solid lines, |,,,=8 (long dashed liney*
Y7pP [+ 1— —x2| +sin lp . /—x “x=1lt=0 =9.047), and ,,,= 16 (short dashed liney* =9.047) are shown.
679 V2 9 70 V213 ’ Herer*=r/o.
()
where For this potential, NEMD results for the Newtonian viscosity
have been parametriz¢d]:
Ny II 14 2 i
—=X, =—=—2=1—X =X/, (me)
2p 2p 2 3 7o=[0.171+0.022 e58¥ — 1)]W, (5)
o €
o 677 y (2770ml/2 1/2
= » Tp : 172’ 3 14 : ;
p pa(2B) wherey=(1/y/2)pc(Be)¥* andm=2m, . This expression

for 7y has been used to calculate the NE poteritial
m, is the reduced mass; is the size parameter of the par-  The expression for the NE potentid) involves the value
ticles, y is the rate of shearing, i.ey=(du,/dy), Uy is the  of the hydrostatic pressupe Following[2,3] one can use the
flow velocity along thex axis, and o is the Newtonian equilibrium value ofp obtained from the solution of the
(zero-shear-rajeviscosity. The NE potentia¥,¢(r) [Eq.(1)]  Percus-Yevick approximation. However, since the purpose
is specialized in the coordinate frame with the azimuthalof our study is to examine the accuracy of the NE potential
angle around the axis denoted agh and the polar angle (1), we will follow our earlier study[1] and use the value of

between vector and thez axis denoted as. the hydrostatic pressure obtained from the corresponding
As in [2,3] we consider the case of the soft-sphere eqUINEMD simulation. For a similar reason, instead of solving
librium intermolecular potential Eq. (3), we will use the NEMD values for the shear and
1 normal stresses.
V(r)=e<z> . (4) Because of the steady-state shearing conditions, the NE
pair potential(1) as well as the direct and total correlation
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§ ! I FIG. 3. The pair distribution function of the simple soft-sphere
© " fluid under shearg,(r,6,¢) (@ and distortion of the fluid struc-
e o A ture due to shearAgne(r,8,¢)=0ne(r,6,¢)—geq(r) () at v
. =045, 6=mu/2, ¢=0, and *=1.0 (p*=8.664[1/2p=
08 1 18 jst "’r;s 8 8% 4 _0.0737N,/2p=—0.00321). NEMD(circles, EMD for the full
stance NE potential(1) (thick solid lineg, MHNC for the full NE potential

FIG. 2. The distortion of the fluid structure due to shear, (1) (thin solid lines, andg(r) (dashed lings Herer* =r/o.
Agne(r:0:¢):gne(rvgv¢)_geq(r) atv=0.45,0=ml/2, $=0, (a), " N
¢=ml4 (b), ¢=3w/4 (c), and y*=0.75 (p* =8.555, I1/2p andc(k),h(k) are the Fourier transforms of the direxftr)
=—0.0578N,/2p=—0.0022). NEMD(circles, EMD for the full  and totalh(r) correlation functions, respectively. The NEOZ
NE potential (1) (thick solid lineg, EMD for the low-shear-rate equation(6) together with the closure relatiof7) and NE
version of the NE potentidlL] (thin solid lines, andge,(r) (dashed  potential (1) form a closed set of equations to be solved.
line). Herer* =r/o. Solution of this set of equations is obtained by expansion in
spherical harmonics as has been utilized in the equilibrium
functionsc(r) and h(r) are time independent. The NEOZ theory of molecular fluids. This consists of expanding the

equation takes the forfl—3] correlation functions in spherical harmonics, writing the ini-
tial NEOZ equation as a set of equations for the spherical
h(k)=c(k)+ pc(k)h(k). (6)  harmonic expansion coefficients in Fourlespace, and solv-

ing this set using a direct iteration method. This technique is
rather standard, and details can be found in many plaees

As in [1] we will use here the MHNC closure conditions
for example, Refg]5,6]).

C(r):exq_ﬁvne(r)—f_h(r)_C(r)+B(r)]—h(r)+C(r)—1,
(7) I1l. RESULTS AND DISCUSSION

_ . The present soft-sphere model fluid was studied at values
which proves to be more accurate than the NE PY approXiys the packing fraction/= (7/6)pc®=0.45, at reduced tem-

mation proposed if2,3]. Here perature 8* = Be=1, and at three different values of re-
) duced shear ratey* =vyr=7yo\m/e=0.5,0.75,1.0. Our
[h(r)—c(r)] (8  NEMD and EMD calculations were carried out following the

B(r)=- 2[1+0.8n(r)—0.8c(r)]’ scheme described earligt].
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FIG. 4. The same as Fig. 3 but at= 7/4. FIG. 5. The same as Fig. 3 but ¢t=37/4.

Table I presents results from the NEMD calculations, in-7/4 7/2,37/4 and two different values ofy* =0.75,1.0.
cluding values of the reduced hydrostatic presspie  Hereg,, andg,, are the NE and equilibrium pair distribu-
=pel o, shear stresH/2p, and normal stres;/2p, which tion functions, respectively, NEMD simulation is carried out
are used as input to some of the theoretical calculations. Tgy, ine system with the original pair potenti@), and EMD
estimate the nur_nber of harmonits,, needed to repre_sent simulation and MHNC theory use the NE potentisl as an
the Mayer function accurately for the NE potent(@), in 5t comparison and analysis of the results obtained by the
Fig. 1 we compare an exact Mayer function with Mayer\eyp EMD, and MHNC methods lead us to conclusions
functions approximated by a finite number of harmonics. Forquite similar t,o those obtained in our earlier stidy. As in
the shear rate* <1.0, the Mayer function can be accurately the low-shear-rate ca$t], the agreement between EMD and
represented using four harmonics. However, with further in'l\/IHNC predictions for b’otrg and Ag,. is good and the
crease of the shear rate, the number of harmonics needed d8reement between NEMD and EMD results is rather poor
descri_be t_he Mayer function rapidly increase_s. This can b Ithough the full version of the NE potentidll) substan- '
seen in Fig. 1, where t_he exact Mayer function for the NEtiaIIy improves performance of the theofgee Fig. 2 its
potential aty* =9.047 (y=10.0) is reproduced only by us- predictions are still unsatisfactory. EMD with the full NE
ing 16 harmonics. Here in the casegf=1.0 the values of potential gives qualitatively correct predictions only for the
the shearll and normalN; stresses are taken from the shift of the position of the first maximum and for the changes
NEMD simulation(Table )) and in the case of* =9.047 are  in the phase of oscillation ofj,(r) caused by shearing.
calculated from Eq.(3). We note in passing that in However, the corresponding changes in the magnitude of the
[2,3] numerical analysis of thg present version of the tﬂeor)ﬁrst maximum ofg,,«(r) predicted by EMD have an opposite
for values of the shear rate in the range of 108y  direction in comparison with those predicted by NEMD. For
=<200.0 was carried out taking into account only four har-the azimuthal angle=0 and ¢= /2, shearing causes an
monics. increase of the first maximum f,o(r) and for ¢==/4 a

To examine the accuracy of the present version of GHElecrease, while EMD predictions are in the opposite direc-
theory, in Figs. 2-5 we compare the NEMD, EMD, andtions. Only in the case ofp=3x/4 do both EMD and
MHNC results for the pair distribution functiong,e(r), NEMD simulations predict increase of the first maximum of
Jeq(r) and for the differencedg,e(r) =0ne(r) —geq(r) at  gne(r) due to shearing. However, at the same time, EMD
four different values of the azimuthal angles=0, strongly overestimates this increase.
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IV. CONCLUDING REMARKS approaches for obtaining the NE potential.
Using the methods of NEMD, MHNC, and EMD with a
NE potential, we have tested the high-shear-rate version of ACKNOWLEDGMENTS
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